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We present a continuum theory to describe elastically induced phase transitions between coherent solid
phases. In the limit of vanishing elastic constants in one of the phases, the model can be used to describe
fracture on the basis of the late stage of the Asaro-Tiller-Grinfeld instability. Starting from a sharp interface
formulation we derive the elastic equations and the dissipative interface kinetics. We develop a phase field
model to simulate these processes numerically; in the sharp interface limit, it reproduces the desired equations
of motion and boundary conditions. We perform large scale simulations of fracture processes to eliminate
finite-size effects and compare the results to a recently developed sharp interface method. Details of the
numerical simulations are explained, and the generalization to multiphase simulations is presented.
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I. INTRODUCTION

The propagation of cracks is very important for many
applications and a central topic in physics and materials sci-
ence. The most fundamental basis of understanding fracture
traces back to Griffith �1�; according to his findings, the
growth of cracks is determined by a competition of a release
of elastic energy and a simultaneous increase of the surface
energy if a crack extends. Although much progress has been
made in understanding the striking features of cracks �2�, the
mechanisms which determine the dynamics of crack propa-
gation are still under heavy debate. A typical description of
cracks starts on the atomic level and interprets the propaga-
tion by successive breaking of bonds; it is obvious that the
theoretical predictions significantly depend on the underlying
empirical models of the atomic properties �see, for example,
�3��. A rather complementary approach takes into account
effects like plasticity, which can lead to extended crack tips
�finite tip radius r0� �4�. Recent experimental investigations
of fracture in brittle gels �5� possibly reveal macroscopic
scales. It is obvious that under these circumstances a full
modeling of cracks should not only determine the crack
speed but also the entire crack shape and scale self-
consistently.

During the past years, phase field modeling has emerged
as a promising approach to analyze fracture by continuum
methods. Recent phase field models go beyond the micro-
scopic limit of discrete models and encompass much of the
expected behavior of cracks �6–9�. However, a significant
feature of these descriptions is that the scale of the growing
patterns is always set by the phase field interface width,
which is a purely numerical parameter and not directly con-
nected to physical properties; therefore these models do not
possess a valid sharp interface limit. Alternative descriptions,
which are intended to investigate the influence of elastic
stresses on the morphological deformation of surfaces due to
phase transition processes, are based on macroscopic equa-
tions of motion; but they suffer from inherent finite time
singularities which do not allow steady state crack growth
unless the tip radius is again limited by the phase field inter-

face width �10�. Very different approaches which are not
based on a phase field as an order parameter introduce a tip
scale selection by the introduction of complicated nonlinear
terms in the elastic energy for high strains in the tip region
�11�, requiring additional parameters.

Recently, we developed a minimum theory of fracture
�12� which is only based on well-established thermodynami-
cal concepts. This is also motivated by experimental results
showing that many features of crack growth are rather ge-
neric �13�; among them is the saturation of the steady state
velocity appreciably below the Rayleigh speed and a tip
splitting for high applied tension. This theory describes crack
growth as a consequence of the Asaro-Tiller-Grinfeld �ATG�
instability �14� in the framework of a continuum theory.
Mass transport at the extended crack tips can be either due to
surface diffusion or a phase transformation process. The lat-
ter has been investigated numerically by phase field simula-
tions �15� and sharp interface methods �16�. It turned out that
the phase field simulations were still significantly influenced
by finite size effects and insufficient separation of the appear-
ing length scales, and therefore the results did not coincide.
One central aim of the current paper is therefore to carefully
extrapolate phase field results obtained by large-scale com-
putations. As we will show, we then get a very convincing
agreement of the approaches. Also, we explain the phase
field method and the underlying sharp interface equations in
more detail.

The paper is organized as follows: First, in Sec. II, we
introduce the sharp interface equations to describe crack
propagation as a phase transformation process. The basic se-
lection mechanisms for crack growth are reviewed in Sec.
III. We introduce a phase field description to solve the arising
moving boundary problem in Sec. IV. We demonstrate the
numerical separation of length scales and obtain results
which are in excellent agreement with sharp-interface predic-
tions �Sec. V�. This part contains important results concern-
ing the underlying continuum theory of fracture. In Sec. VI
we briefly explain how the model can be extended to systems
consisting of multiple phases. Detailed derivations of the
sharp interface equations are given in Appendix A. Since
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coherency of two solid phases leads to an unexpected expres-
sion for the chemical potential, its relevance is analyzed spe-
cifically for the motion of a planar interface �Appendix B�. In
Appendix C it is demonstrated that the presented phase field
model recovers this effect in the sharp interface limit. Fi-
nally, details of the numerical implementation of the phase
field model are given in Appendix D.

II. SHARP INTERFACE DESCRIPTION

The fracture process in �15� is interpreted as a first order
phase transition from the solid to a “dense gas phase”, driven
by elastic effects. More generally, we investigate the transi-
tion between two different solid phases. In the limiting case
that one phase is infinitely soft, crack propagation can be
studied. A central simplification is due to the assumption of
equal mass density � in both phases and the condition of
coherency at the interface, i.e., the displacement field ui is
continuous across the phase boundary,

ui
�1� = ui

�2�, �1�

where the upper indices indicate the different phases. The
strain �ik is related to the displacement field ui by

�ik
��� =

1

2
� �ui

���

�xk
+

�uk
���

�xi
� . �2�

Strain and stress �ik are connected through Hooke’s law; for
the specific case of isotropic materials, it reads

�ik
��� =

E���

1 + ������ik
��� +

����

1 − 2�����ik�ll
���� �3�

for each phase. Here, E and � are elastic modulus and Pois-
son ratio, respectively. We note that eigenstrain contributions
due to different unit cells of the phases are not considered
here for brevity, but they can easily be introduced �17�. For
simplicity, we assume a two-dimensional plane-strain situa-
tion.

All following relations are obtained in a consistent way
from variational principles, and this is described in detail in
Appendix A. The equations of dynamical elasticity are

��ik
���

�xk
= �üi �4�

for each phase. On the interface, we obtain the expected
continuity of normal and shear stresses

�in
�1� = �in

�2�. �5�

Here, the index n denotes the normal direction of the inter-
face, with the perpendicular tangential direction � �see Fig.
1�. We mention that this equation holds only for the specific
conditions of equal mass densities and coherency at the in-
terface. In other cases one obtains more general relations for
momentum conservation at the interface, which also involve
the interface normal velocity vn �2�.

The elastic contribution to the chemical potential at the
interface for each phase is

	el
��� = 
�1

2
���

������
��� −

1

2
�nn

����nn
��� − �n�

����n�
���� . �6�

Since the chemical potential has the dimension energy per
particle, we introduced the atomic volume 
. It is quite re-
markable that the normal and shear contributions enter into
the expression with a negative sign, in contrast to the natural
expectation 	̃el=
�ik�ik /2, which is the potential energy
density. The reason for this modification is the coherency
constraint which has to be fulfilled at the interface. An illus-
trative example to understand this unexpected expression for
the chemical potential is given in Appendix B. However, this
effect is only important for solid-solid transformations. For
crack propagation, where we assume that the new phase in-
side the crack is infinitely soft, the normal and shear stresses
vanish at the interface, and therefore the discrepancy be-
tween the chemical potential �6� and the naive guess 	̃el
disappears.

We would also like to mention that the equality of the
mass density and the coherency leads to the absence of ki-
netic energy contributions to the chemical potential. The rea-
son is that such a contribution is continuous across the inter-
face; finally, only the chemical potential difference 	�1�

−	�2� enters into the equation of motion for the interface, and
therefore such a term would cancel. Nevertheless, we note
that the kinetic energy contribution would enter into the
chemical potential with negative sign, i.e., −�u̇i

2, because in
the Lagrangian the kinetic and potential energy contributions
appear with opposite sign. Kinetic contributions may play a
role if instead of a phase transformation process, surface dif-
fusion along a free boundary drives the evolution. In such a
description the total mass would be conserved by construc-
tion, which would not be the case for the present phase tran-
sition model with a density contrast between the solid and
the “dense gas phase” inside the crack. Notice that this com-
plication arises only because of the finite crack tip radius
which is selected self-consistently here; in a sharp tip model,
the crack volume and mass would always vanish. Of course,
it would be desirable to have a true vacuum inside the crack,
but curing the problem of mass loss would then require one
to have a strain dependent density ����, which is beyond the

(1)

(2)
V (t)

V (t)

A(t)

n=n(1)

n
(2)

vn n

τ

FIG. 1. Geometry of the phase transition scenario. Phase transi-
tions between phases 1 and 2 are possible and lead to interface
motion with local normal velocity vn. The volumes of the two
phases and the interface A�t� are therefore time-dependent.
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standard theory of linear elasticity, where such dependencies
are ignored.

For the motion of the interface, surface energy is also
taken into account. Since it does not couple to the elastic
terms, it simply gives an additional contribution to the
chemical potential,

	s = 
�� ,

with the local interface curvature � and the surface energy
density �. The curvature is positive if phase 1 is convex.
Then the motion of the interface due to a phase transition
process is described by the local normal velocity �D is a
kinetic coefficient with dimension �D�=m2/s�

vn = −
D

�

�	el

�1� − 	el
�2� + ��� , �7�

which is positive if phase 1 grows. The set of equations
�1�–�7� describes the dynamics of the system. We point out
that it leads to a complicated free boundary problem, and the
arising interfacial patterns are self-consistently selected dur-
ing this nonequilibrium process if external forces are applied
to the system. For an initially almost flat interface between a
soft and a hard phase, which is nonhydrostatically strained,
first the ATG instability develops: Long wave morphological
perturbations lead to a decrease of the total energy and the
formation of deep notches, similar to cracks �see, e.g.,
�10,18��. As we have shown in �12,15,16�, it is essential to
include the inertial contributions because otherwise a steady
state growth of these cracks is impossible, and the system
collapses into the finite time cusp singularity of the ATG
instability.

III. CRACK PROPAGATION: SELECTION PRINCIPLES

In the case that one phase is infinitely soft, crack propa-
gation can be studied. Here, growth of the crack is based on
a phase transition of the solid matrix to a “dense gas phase”
which has the same density as the solid. In this sense, it is
similar to other models of fracture based on a nonconserved
order parameter �6–8�. The crucial difference is that the cur-
rent model is based on well-defined sharp interface equa-
tions, and therefore the predictions do not depend on inher-
ently numerical parameters like a phase field interface width.
However, numerically, it requires a tedious separation of
scales to obtain these results; this is described in the next
section.

Understanding fracture as a phase transition process offers
many numerical advantages, as phase field models can be
derived to solve this moving-boundary problem. We point
out that the underlying selection principles which allow a
steady-state crack growth with propagation velocities well
below the Rayleigh speed, tip blunting, and branching for
high driving forces are rather generic and are similarly valid
for models with conserved order parameters. In �12�, we de-
rived the similar equations of motion if instead of a phase
transition, mass transport is due to surface diffusion along
the free crack boundary.

In the latter case, the elastic boundary conditions are re-
placed by

�in
�sd� = − �u̇ivn, �8�

and the chemical potential becomes

	�sd� = 
�1

2
�ik�ik −

1

2
�u̇i

2 + ��� . �9�

It differs from expression �6� first by the elastic energy den-
sity, because no coherency constraints have to be fulfilled
here. Second, the kinetic energy density appears here, be-
cause it does not cancel in the derivation from the Lagrang-
ian. The equation of motion for the interface is replaced by

vn
�sd� =

D�sd�

�


�2	�sd�

��2 �10�

with the surface diffusion coefficient D�sd�.
In both cases, stresses on the boundary of the crack tip

with finite radius r0 scale as

� � Kr0
−1/2, �11�

and the curvature behaves as ��1/r0. Therefore all contri-
butions to the chemical potentials scale like 	�r0

−1/2, and
this is ultimately the reason for the cusp singularity of the
Grinfeld instability and the impossibility of a steady-state
crack growth, if only static elasticity is taken into account:
Then, the equations of motion �7� or �10� can be rescaled to
an arbitrary tip radius which is not selected by the dynamical
process. The explanation is that the linear theory of elasticity
and surface energy define only one length scale, the Griffith
length, which is macroscopic, but do not provide a micro-
scopic scale which allows the selection of a tip scale. For-
mally, the equations of motion depend only on the dimen-
sionless combinations vr0 /D for the phase transition
dynamics and vr0

3 /D�sd� for surface diffusion; the radius r0
and the steady state velocity v therefore cannot be selected
separately; any rescaling which maintains the value of the
product would therefore describe another solution. The situ-
ation changes if inertial effects are taken into account, which
is reasonable for fast crack propagation. Then additionally
the ratio v /vR �vR is the Rayleigh speed� appears in the equa-
tions of motion, and therefore a rescaling is no longer pos-
sible. Instead, D /vR for the phase transition dynamics and
�D�sd� /vR�1/3 for surface diffusion set the tip scale. Thus we
conclude that fast steady state growth of cracks is possible if
inertial effects are taken into account. More formal analyses
also including rigorous selection mechanisms due to the sup-
pression of growing crack openings far behind the tip are
given in �15� for phase transition processes and in �12� for
surface diffusion.

This analysis shows that the selection principles which
allow a fast-steady state growth of cracks are similar for the
simple phase transition process studied here and surface dif-
fusion. The latter does not require the introduction of a dense
gas phase inside the crack and obeys conservation of the
solid mass itself. Even more, surface diffusion can be under-
stood in a generalized sense as plastic flow in a thin region
around the extended tip which can be effectively described in
the spirit of a lubrication approximation. Therefore many
general statements obtained for the phase transition dynam-
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ics can also be used for crack growth propelled by surface
diffusion. The latter is more tedious to implement numeri-
cally, since the equation of motion �10� is of higher order
�19�.

For both mechanisms, a tip splitting is possible for high
applied tensions due to a secondary ATG instability: Since
��Kr0

−1/2 in the tip region and the local ATG length is LG
�E� /�2, an instability can occur, provided that the tip ra-
dius becomes of the order of the ATG length. In dimension-
less units, this leads to the prediction split�O�1�.

IV. PHASE FIELD MODEL

To describe systems with moving boundaries according to
the equations of motion developed above, we implemented a
phase field model. Let � denote the phase field with values
�=1 for phase 1 and �=0 for phase 2. The energy density
contributions are

fel = 	����ij
2 + ������ii�2/2 �12�

for the elastic energy, with the interpolated shear modulus
and Lamé coefficient

	��� = h���	�1� + �1 − h����	�2�, �13�

���� = h�����1� + �1 − h������2�, �14�

where

h��� = �2�3 − 2�� �15�

interpolates between the phases, and the superscripts denote
the bulk values. The surface energy is

fs��� = 3������2/2 �16�

with the interface width �. Finally,

fdw = 6��2�1 − ��2/� �17�

is the well-known double well potential. Thus the total free
energy is given by

F =� dV�fel + fs + fdw� . �18�

The elastodynamic equations are derived from the free en-
ergy by variation with respect to the displacements ui,

�üi = − � �F

�ui
�

�=const
, �19�

and the dissipative phase fields dynamics follows from

��

�t
= −

D

3��
� �F

��
�

ui=const
. �20�

It has been shown in �10� that in the quasistatic case, the
above equations lead to the sharp interface equations �4�–�7�
if the interface width � is significantly smaller than all physi-
cal length scales present in the system. In Appendix C, it is
illustrated that this model also correctly incorporates the
modification of the chemical potential �6� due to the coher-

ency constraint. Details of the numerical implementation are
given in Appendix D.

V. PHASE FIELD MODELING OF CRACK PROPAGATION

The central prediction of this theory of fracture is that a
well-defined steady-state growth with finite tip radius and
velocities appreciably below the Rayleigh speed is possible.
This also cures the problem of the finite-time cusp singular-
ity of the Grinfeld instability. These predictions have been
confirmed by phase field simulations �15� and sharp interface
methods �16� which are based on a multipole expansion of
the elastodynamic fields. Surprisingly, it turned out that the
obtained results seem to differ significantly: In particular, the
sharp interface method predicts a range of driving forces
inside which the velocity of the crack is a monotonically
decreasing function. Here, we demonstrate that the discrep-
ancy of results is due to finite size effects of the previous
phase field results �15�, and that by careful extrapolation of
large-scale simulations, a coinciding behavior is obtained.

We investigate crack growth in a strip geometry with
fixed displacements at the upper and lower grip. The multi-
pole expansion technique �16� is designed to model a perfect
separation of the crack tip scale D /vR to the strip width L: In
most real cases, crack tips are very tiny, and therefore it is
theoretically desirable to describe this limit. For the phase
field method, however, a finite strip width L is necessary, and
a good separation of the scales therefore requires time-
consuming large-scale calculations. We typically use strip
lengths 2L and shift the system such that the tip remains in
the horizontal center. This allows one to study the propaga-
tion for long times until the crack reaches a steady-state situ-
ation. Apart from this finite size restriction, we had to intro-
duce the interface width � as a numerical parameter, and the
phase field method delivers quantitative results only in the
limit that all physical scales are much larger than this length
scale. The latter has to be noticeably larger than the numeri-
cal lattice parameter x, but the results show that the choice
�=5x is sufficient. We therefore have to satisfy the hierar-
chy relation

� �
D

vR
� L , �21�

which is numerically hard to achieve. We developed a paral-
lel version of the phase field code which is run on up to 2048
processors, with system sizes up to 8192�4096�x�2. All
computations are performed on the supercomputers JUMP
and JUBL operated at the Research Center Jülich.

For the strip geometry, a dimensionless driving force  is
defined as

 =
�2�� + 2	�

4�L
, �22�

with � being a fixed displacement by which the strip is elon-
gated vertically. The elastic constants of the new phase inside
the crack are zero. The value =1 corresponds to the Griffith
point. All calculations are done with Poisson ratio �=1/3.

In �16�, it was shown that close to the Griffith point, dis-
sipation free solution exists in the framework of the model:
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In this regime 1��1.14 an additional microscopic length
scale is needed to select the small tip radius which is no
longer determined by the ratio D /vR. This can here be mim-
icked by the phase field interface width and was already done
in �15�. Here, we focus on the more interesting regime of
higher driving forces, but still below the threshold of insta-
bility. Typical crack shapes in the vicinity of the tip are
shown in Fig. 2.

To fulfill the scale separation �21�, we perform a double
extrapolation of the obtained steady-state velocities vL,� �the
subscripts indicate the additional nonresolved length scale
dependencies�. In the first step, we extend the simulations to
an infinite system size. Therefore we decrease the ratio � /L
→0 for fixed tip scale ratio D /�vR. This step is demonstrated
in Fig. 3 for =1.4. Here, the dimensionless propagation
velocity ṽL,�=vL,� /vR is plotted as a function of the inverse
square root of the system size �� /L�1/2. In this representation,

the data for the larger systems can be extrapolated linearly to
infinite system sizes, since we numerically get a scaling

ṽL,��,
D

vR�
,
L

�
� = ṽ��,

D

vR�
� + �� �

L
�1/2

�23�

for large systems, � /L�1, with a constant ��0 for each
curve. Since the separation of D /vR to � is still imperfect, the
extrapolated values ṽ�� ,D /vR�� do not yet cumulate to a
single point, and therefore a second extrapolation step is nec-
essary.

Hence in Fig. 4, the dependence of the velocity v� /vR on
the separation parameter vR� /D for =1.4 is shown. The
extrapolated values from Fig. 3 are used, and we obtain a
scaling

ṽ��,
D

vR�
� = ṽ�� − �

vR�

D
�24�

with a constant ��0 and the dimensionless sharp interface
limit velocity ṽ=v /vR. Notice that both scaling relations �23�
and �24� are obtained empirically from the numerical data.

This tedious procedure was performed for several driving
forces, and in Fig. 5 the comparison to the multipole expan-
sion method �16� is shown. The agreement of the results
which are obtained from completely different methods is
very convincing. The small deviation for =1.8 is due to the
fact that this value is already close to the threshold of the

-5 0
xv

R
/D

-2

-1

0

1

2
yv

R
/D

D/v
R
ξ = 2.33

D/v
R
ξ = 4.64

D/v
R
ξ = 9.27

D/v
R
ξ = 18.55

FIG. 2. Crack shapes for different scale separations D /vR� and
fixed ratio LvR /D=11.03; the aspect ratio of the system is 2:1. The
driving force is =1.4. By improvement of the separation, the
crack opening is reduced, and finally the boundaries become
straight parallel lines.
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FIG. 3. First step of the extrapolation procedure for the dimen-
sionless velocity v /vR. The system size L /� is increased and the
ratio D /�vR is kept fixed for each curve. For each ratio, an extrapo-
lated velocity v� /vR corresponding to an infinite system size is ob-
tained, as indicated by the dashed lines. The driving force is 
=1.4.
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FIG. 4. Second extrapolation step to obtain the sharp interface
velocity v. The extrapolated velocities obtained from Fig. 3 are
plotted as a function of the scale separation parameter vR� /D. In
this example =1.4 is used.
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FIG. 5. Comparison of the steady-state crack velocity obtained
from the multipole expansion technique �16� and the extrapolated
value from phase field simulations.
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tip-splitting instability which cannot be captured by the mul-
tipole expansion method. In particular, we find evidence for
the prediction that the steady-state velocity decays weakly
with increasing driving force, which might be an artifact of
the model. The explanation for this behavior is that the dis-
sipation function is given by the dimensionless quantity
vr0 /D, and this is indeed a monotonically increasing func-
tion of the driving force ; theoretically, it is not required
that v /vR itself grows. It turns out that the increase of the
dissipation rate is due to the strong tip blunting, which is a
new degree of freedom in the current model, since the entire
crack shape is selected self-consistently. We point out that
for a fixed tip radius due to additional constraints �which are
not contained in the current description�, an increasing ve-
locity v�� would be the consequence. In the phase field
description, this can be mimicked by a small length scale
D /vR, which results in r0��. We studied this behavior in
�15�, and found a growing function v��, in qualitative
agreement with other phase field descriptions and molecular
dynamics models with sharp tips. We also note that it is
conceivable for other transport mechanisms that the effect of
tip blunting is less pronounced or does not occur, and there-
fore an increase of the propagation velocity with the driving
force  would be possible even for full scale separation r0
��.

For higher driving forces, we observe tip-splitting in the
phase-field simulations �see Fig. 6� and therefore steady-state
solutions exist only up to a critical value of . Consequently,
even for �weakly� growing velocities v�� in models similar
to the one presented here, the steady-state velocity would
remain well below the Rayleigh speed due to the termination
of the steady-state branch; moreover, even without the tip
splitting instability, the velocity could remain below vR for
sufficiently strong tip blunting, depending on the particular
model.

The onset of the irregular branching behavior depends
sensitively on the system size, because in relatively small
systems, the branches of the crack cannot separate since they
are repelled by the boundaries. Therefore the steady-state
growth is always stabilized by finite size effects. On the
other hand, initial conditions can trigger an instability, and
then a long transient is required to get back to steady-state
solutions. Despite these restrictions, we are still able to make
the prediction that the threshold of splitting obeys split
�1.9 in the phase field model. It is in agreement with the
conjecture that branching occurs as soon as the steady-state
tip curvature becomes negative, leading to the prediction
split	1.8 �16�.

The numerical determination of a characteristic crack
width scale in the sharp interface limit is more difficult, and
therefore we refrain from performing a double extrapolation
procedure. The explanation is that if the soft phase inside the
crack still possesses small nonvanishing elastic constants, the
equilibrium situation far behind the crack tip corresponds to
a full opening of the crack, instead of the opening being of
the order D /vR: As it is shown in Appendix B, the elastic
energy is minimized if the hard phase completely disappears.
Small remaining elastic constants can be due to an insuffi-
cient separation of the scales D /vR and �, since according to
Eqs. �13� and �14�, the elastic constants decay only exponen-
tially inside the crack, even if this soft phase has nominally
vanishing elastic coefficients. Therefore the crack opening is
a weakly growing function of the distance from the crack tip,
and this slope becomes smaller with better scale separation,
see Fig. 2. We point out that this opening is solely due to the
phase transition process, and the shapes are drawn without
elastic displacements which should be added to obtain the
real shape under load. For example, the vertical displacement
obeys the usual scaling uy �
�x� for large distances �x� from
the tip.

t = 0.00 t = 58.57

t = 87.85 t = 117.14

t = 146.42 t = 175.71

FIG. 6. Irregular tip splitting
scenario for =2.0. We used
LvR /D=44.2 and D /vR�=9.3; the
aspect ratio of the system is 2:1.
Time is given in units D /vR

2 . The
thickness of the interface is the
phase field interface width, indi-
cating a good separation of the
scales.
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The same effect can be seen if we investigate solid-solid
transformations towards a soft phase with small elastic con-
stants. The Poisson ratios in both the surrounding solid and
the new inner phase are chosen equally, �=1/3, but the bulk
moduli differ by many orders of magnitude. The softer the
inner phase becomes, the less the opening of the “crack”
grows with increasing distance from the tip, see Fig. 7. Only
very far away, the new phase fills the whole channel.

VI. MULTIPHASE MODELING

A simple approach to derive multiphase equations to de-
scribe systems consisting of more than two phases starts
again from variational principles. The volume fraction of
each phase is described by a field variable �k, k=1, . . . ,N
with N being the number of phases, �= ��1 , . . . ,�N�. In the
sharp interface limit, one phase field variable has the value
one inside the bulk phases, and the others are zero. Their
temporal evolution is given by

��k

�t
= −

2D̃

3�
� �F

��k
− �� , �25�

where we introduce a Lagrange multiplier to maintain the
phase conservation, �k=1

N �k=1. We redefine the diffusion co-

efficient D /�→ D̃, which is more appropriate to generalize
to arbitrary interfacial energy coefficients �ik between phases
i and k. The additional factor 2 in the equation of motion
above is chosen to recover the previous phase field model in
the case N=2. The expression for the Lagrange multiplier is
given by

� =
1

N
�
i=1

N
�F

��k
. �26�

The free energy F=Fel+Fs+Fdw has the following contribu-
tions:

Fel =� �	����ij
2 + ������ii�2/2�dV , �27�

Fs =
3�

4 �
i,j=1

N

�ij� ��i � � j − � j � �i�2dV , �28�

Fdw =
3

�
�

i,j=1

i�j

N

�ij� �i
2� j

2dV . �29�

Here, the interpolated elastic constants are

	��� = �
i=1

N

h��i�	�i�, ���� = �
i=1

N

h��i���i�, �30�

with 	�i� and ��i� being the elastic constants of the individual
bulk phases. Also, we have mutual interfacial energy coeffi-
cients �ij =� ji for phase boundaries between i and j. Notice
that third-phase contributions appear inside two-phase
boundaries which lead to a renormalization of the bare inter-
facial energies. This can be avoided by the addition of higher
order terms to the multiwell-potential �29�. See Refs. �20,21�
for a discussion of this issue.

Variation gives explicitly:

�Fel

��k
= h���k��	k�ij

2 + �k��ii�2/2� ,

�Fs

��k
= 3��

i=1

N

�ik�2��k � �i − �i � �k� � �i

− �i��i�
2�k − �k�

2�i�� ,

�Fdw

��k
=

12

�
�
i=1

i�k

N

�ik�i
2�k.

Similarly, the elastic equation of motion is just the generali-
zation of Eq. �19�

�üi =
��ik���

�xk
�31�

with

�ik��� = 2	����ik + �����ll�ik. �32�

This description is a direct generalization of Ref. �20�, and
therefore it is known that it leads to appropriate sharp inter-
face equations similar to Eqs. �1�–�7� and contact angles as
predicted by Young’s law �21�.

A particular application is crack growth along a grain
boundary between two equivalent solid phases, see Fig. 8.
Since the grain boundary energy is reduced during crack
propagation, the dimensionless driving force is here rede-
fined according to

* =
�2�� + 2	�

2�2� − �gb�L
, �33�

with the grain boundary energy density �gb. Further analysis
of this situation, also with respect to selection principles, will
be the subject of future investigations.

-5 0
xv
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-1

0

1

2
yv

R
/D

λ
s
/λ

h
= 10

-3

λ
s
/λ

h
= 10

-3.5

λ
s
/λ

h
= 10

-4

λ
s
/λ

h
= 10

-4.5

FIG. 7. Solid-solid transformation in a strip. A very soft phase
grows at the expense of a harder phase. Parameters are LvR /D
=11.03 �vR is the Rayleigh speed of the hard phase�, D /�vR=9.27,
and the aspect ratio is 2:1. The Poisson ratio �=1/3 is equal in both
phases, and the driving force is =1.4.
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VII. SUMMARY

We investigated a phase field model for fast crack propa-
gation which is based only on dynamical elasticity and phase
transition dynamics. This model has a valid sharp interface
limit, and describes the fast crack growth and a branching
instability for high driving forces. Both the propagation ve-
locity and the crack shape are determined self-consistently.
Comparison of the results with a recently developed sharp
interface description based on a multipole expansion tech-
nique �16� shows that previous phase field results �15� are
strongly influenced by finite size effects and insufficient
separation of the tip radius and the numerical phase field
interface width. We therefore performed large scale simula-
tions and extrapolated the obtained data to infinite system
sizes and vanishing interface widths, yielding a very good
agreement of the results, which are obtained from two com-
pletely different numerical methods. The phase field model is
also extended to describe elastically induced phase transi-
tions and multiphase systems. The latter is demonstrated for
crack growth along a grain boundary.
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APPENDIX A: DERIVATION OF SHARP INTERFACE
EQUATIONS

Here we explain in detail how the equations of motion,
the appropriate boundary conditions, and the chemical poten-
tial, which is responsible for interface motion, are derived in
a unique way from variational principles. We assume that the
two phases are coherent, i.e., the displacement field is con-
tinuous across the interface, and the mass densities are equal
in both phases. Since we do not consider lattice strains or
surface tension here, all elastic stresses arise from external
forces. For simplicity, we assume a two-dimensional plane-
strain situation. Contributions due to surface energy do not
couple to the elastic fields. Ultimately, they give only an
additive curvature-dependent term to the chemical potential,
as incorporated in Eq. �7�. We note that this expression was
already obtained in �22�, but here we take also inertial effects
into account, since the velocity of cracks is typically of the
order of the sound speeds.

The kinetic energy density is in both phases

T =
1

2
�u̇i

2, �A1�

and the potential energy density reads

U��� =
1

2
�ik

����ik
���. �A2�

Notice that certain components of the stress and strain ten-
sors are in general discontinuous at the interface, as will be
elaborated below.

We assume the total volume V of the entire system to be
constant in time and to be decomposed into two subvolumes
V�1��t� and V�2��t� of different solids. Upper indices discrimi-
nate between the phases �see Fig. 1�. The common interface
A�t�ª�V�1��t���V�2��t� with normal n and tangential � is
moving in time due to phase transitions, and consequently,
the phase volumes are time-dependent as well. However, we
do not yet specify a concrete dynamical process here.

The Lagrangian is defined as

L�t� = �
V

TdV − �
V1�t�

U�1�dV − �
V2�t�

U�2�dV , �A3�

and the action is

S = �
t0

t1

L�t�dt , �A4�

with arbitrary beginning and end times t0 and t1.
We obtain the usual elastic equations by varying the ac-

tion �A4� with respect to the displacement field for fixed
interface positions. Thus we get

�S = �
t0

t1

dt�
V

�u̇i�u̇idV − �
V1�t�

�ik
�1���ik

�1�dV

− �
V2�t�

�ik
�2���ik

�2�dV�
= �

t0

t1

dt�
V

�u̇i�u̇idV + �
V1�t�

��ik
�1�

�xk
�uidV

− �
A�t�

�in�1�
�1� �uid� + �

V2�t�

��ik
�2�

�xk
�uidV

− �
A�t�

�in�2�
�2� �uid�� .

The first integral is integrated by parts, assuming as usual
that the variations �ui vanish for t0 and t1. Since also the
normal vectors of both phases are antiparallel, nªn�1�

=−n�2�, thus �in�2� =−�in, we get

FIG. 8. Steady-state crack growth along a grain boundary. The
driving force is *=1.52. Here, all interfacial energies and kinetic
coefficients are chosen equally, and also the elastic properties of the

solid phases �gray regions� coincide. Parameters are LvR / D̃=4.29,

D̃ /�vR=9.31, the aspect ratio is 2:1, and �=1/3.
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�S = �
t0

t1

dt�
V1�t�

� ��ik
�1�

�xk
− �üi��uidV + �

V2�t�
� ��ik

�2�

�xk

− �üi��uidV − �
A�t�

��in
�1� − �in

�2���uid�� .

Demanding vanishing variation �S gives in the bulk the
usual equations of motion

��ik
���

�xk
= �üi, �A5�

and on the interface we obtain the continuity of normal and
shear stresses

�in
�1� = �in

�2�. �A6�

The next step is to calculate the change of the total energy
when the interface moves in the course of time. This is done
in three steps: First, we calculate the change of energy due to
the time evolution of the elastic fields for fixed interface
position. Second, we calculate the change of elastic energy
due to the motion of the interface for fixed elastic fields in
the bulk phases. After this second step, the coherency condi-
tion at the interface is violated. In the last step, we therefore
have to do additional work to adjust the displacements ap-
propriately.

The first contribution is

dW1

dt
= �

V�1��t�

�

�t
�T + U�1��dV + �

V�2��t�

�

�t
�T + U�2��dV

= �
V

�u̇iüidV + �
V�1��t�

�ik
�1��̇ik

�1�dV + �
V�2��t�

�ik
�2��̇ik

�2�dV .

We note that the kinetic energy density is continuous across
the interface. Furthermore, by the equations of motion �A5�

dW1

dt
= �

V�1��t�
u̇i

��ik
�1�

�xk
dV + �

V�2��t�
u̇i

��ik
�2�

�xk
dV

+ �
V�1��t�

�

�xk
��ik

�1�u̇i�dV − �
V�1��t�

��ik
�1�

�xk
u̇idV

+ �
V�2��t�

�

�xk
��ik

�2�u̇i�dV − �
V�2��t�

��ik
�2�

�xk
u̇idV

= �
A�t�

�in�1�
�1� u̇id� + �

A�t�
�in�2�

�2� u̇id� = 0,

where we assumed for simplicity that u̇i=0 on all boundaries
apart from A�t�, i.e., no external work is exerted to the solids.
In the last step, we used the boundary conditions �A6�, �in

�1�

=�in
�2�=−�

in�2�
�2�

; also, by definition, the displacement rate u̇i is
continuous across the interface. The above result is quite
clear since the elastodynamic time evolution is purely con-
servative.

The second contribution arises due to the motion of the
interface for fixed elastic fields. We extend the elastic state of
the growing phase analytically into the newly acquired re-
gion. This assures that the bulk equations remain fulfilled in

both phases even after the forward motion of the interface.
Thus this contribution to the energy change rate reads

dW2

dt
= �

A�t�
vn�U�1� − U�2��d� . �A7�

The interface normal velocity is positive if the phase 1 lo-
cally extends. Here, we immediately used the continuity of
the kinetic energy density, which therefore cancels.

After the phase transformation in this second step, the
displacements are no longer continuous at the interface. Thus
extra work has to be invested to remove this misfit. In the
local coordinate system n and � �see Fig. 1� the strain tensor
becomes

�nn = �nun, �A8�

��� = ��u� + �un, �A9�

�n� = ��n =
1

2
���un + �nu� − �u�� . �A10�

Here, � is the interface curvature, which is positive if the
phase 1 is convex.

At this point, a few comments concerning the continuity
of various fields across the coherent interface are in order.
Since the displacement field has to be continuous across the
interface, also its tangential derivatives are continuous, but
the normal derivatives are not. Consequently, the following
quantities are continuous: ��u�, ��un, �un, �u�, and ���. On
the other hand, �nun, �nu�, �nn, and �n� are discontinuous
across the interface.

In the second step of energy calculation, we extended
smoothly the fields into the receding domain. The interface at
this new time t+t is now located at a different position.
This leads to discontinuities of the displacements, e.g., for
the normal component at the new position of the interface

un = ���nun��1� − ��nun��2��vnt = ��nn
�1� − �nn

�2��vnt ,

where �¯���� denotes the evaluation of a probably discon-
tinuous expression at the previous interface position, taken
for the phase �. Similarly, for the tangential component

u� = �2�n�
�1� − ���un��1� + ��u���1� − 2�n�

�2� + ���un��2�

− ��u���2��vnt = 2��n�
�1� − �n�

�2��vnt .

To zeroth order in t, the stresses at the new interface posi-
tion are equal on both sides and identical to the stresses at
the previous interface position. To reconnect the displace-
ments, we have to apply the coherency work rate

dW3

dt
= �

A�t�
vn�− ��nn

�1� − �nn
�2���nn − 2��n�

�1� − �n�
�2���n��d� .

Altogether, the change of the energy is given by
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dW

dt
=

d�W1 + W2 + W3�
dt

= �
A�t�

vn�1

2
���

�1����
�1� −

1

2
�nn

�1��nn
�1� − �n�

�1��n�
�1��

− �1

2
���

�2����
�2� −

1

2
�nn

�2��nn
�2� − �n�

�2��n�
�2���d� .

We can therefore define an appropriate chemical potential for
each phase at the coherent interface

	el
��� = 
�1

2
���

������
��� −

1

2
�nn

����nn
��� − �n�

����n�
���� . �A11�

Notice that, in contrast to a free surface, the normal and
shear contributions appear with negative sign. Then, the en-
ergy dissipation rate can be written as

dW

dt
=

1



�

A�t�
�	el

�1� − 	el
�2��vnd� . �A12�

Due to the coherency condition and the requirement of equal
mass density, the kinetic energy density does not appear.

APPENDIX B: MOTION OF PLANAR PHASE
BOUNDARY

The elastic contribution to the chemical potential �6� at
the interface between two solid phases has the remarkable
property that the normal and shear contributions are negative
definite. This means that growth of the phase with higher
elastic energy density at the expense of the phase with lower
energy density can still reduce the total energy. In order to
illuminate this point, we consider a simple example.

Here, two strips of different solid materials are coherently
connected �see Fig. 9�, and the interface can move due to a
phase transition. We assume for simplicity that the process is
slow and inertial effects can be neglected. We apply a fixed
displacement � at the upper end of this layer structure and set
the displacement at the lower grip to zero. The total strip
width L is distributed among the two layers, L=L�1�+L�2�

=const. We have a homogeneous strain situation in each of
the phases ��=1,2�, i.e., ux

���=0, uy
���=uy

����y� with a pure
linear dependence of uy

��� on y. Strains are �xx
���=�xy

���=0, �yy

=�yuy
���=const. The elongation of each phase is ����

=L����yy
���. In sum, they are equal to the prescribed total open-

ing �=��1�+��2�=const. Stresses and strain are connected
through Hooke’s law for isotropic materials, thus �xx

���

=�����yy
���, �xy

���=0, �yy
���= �2	���+������yy

���. At the interface,
the equality of normal stresses, �yy

�1�=�yy
�2�, leads to

�yy
�2� =

2	�1� + ��1�

2	�2� + ��2��yy
�1�. �B1�

The strain can be computed in terms of the given total open-
ing,

�yy
�1� =

�

L�1� + �L − L�1��
2	�1� + ��1�

2	�2� + ��2�

. �B2�

Hence we can calculate the total elastic energy in the strip
�per unit length� as a function of L�1�:

U�L�1�� =
1

2
L�1��ik

�1��ik
�1� +

1

2
L�2��ik

�2��ik
�2�

=
1

2

�2�2	�1� + ��1��

L�1� + �L − L�1��
2	�1� + ��1�

2	�2� + ��2�

. �B3�

This function is monotonic in L�1�. Assuming that phase 1 is
harder than phase 2, 2	�1�+��1��2	�2�+��2�, the energy is
minimized if L�1�=0, i.e., if the hard phase disappears. Notice
that on the other hand, the elastic energy density is higher in
the softer phase, �ik

�1��ik
�1� /2��ik

�2��ik
�2� /2. We get from Eq. �B3�

dU�1�

dL�1� = −
1

2
�yy

�1��yy
�1� +

1

2
�yy

�2��yy
�2� =

1



�	el

�1� − 	el
�2�� .

Here we clearly see that the negative elastic energy density
for the normal direction enters into the energy change rate
and thus into the chemical potential; in more general cases
one can easily verify that this is also true for shear contribu-
tions.

APPENDIX C: PHASE FIELD MODELING OF COHERENT
SOLIDS

The aim of this section is to show that the phase field
model presented in Sec. IV leads to the correct sharp inter-
face limit even for solid-solid transformations, where the
chemical potential differs from the usual expression �23�.
Since the treatment of the surface energy contribution is
well-known and enters additively into the chemical potential,
we focus on the elastic fields here.

For smooth interfaces, all stresses remain finite even in
the sharp interface limit. We note that this statement holds
even for fracture processes, where usually stresses can di-
verge at sharp corners and tips in the framework of the linear
theory of elasticity; nevertheless, in the current description,
the tip radius r0 is always finite and therefore stresses are
limited to values ��Kr0

−1/2, where K is a stress intensity
factor. Consequently, the displacement field must be continu-
ous in the sharp interface limit because a finite mismatch �u

L

L

L
(1)

(2)

δ δ

x

y

FIG. 9. Motion of a planar interface in a strip geometry. Verti-
cally, a constant displacement � is applied to the grips of the strip
which consists of two solid phases with different elastic constants.
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would lead to diverging stresses and strains ��� /E��u /�,
and thus a divergent elastic energy. Then, obviously, the
equation of motion �19� leads to the usual elastic bulk equa-
tions and also to the continuity of normal and shear stresses
at the interface in the limit �→0.

Next, we calculate the total elastic energy change due to
the interface motion. We determine the energy contributions
and changes in a line perpendicular through the interface,
assuming the interface curvature to be small, ���1. To do
so, we introduce a local coordinate n normal to the interface
�pointing from phase 1 into phase 2�. The total elastic energy
per unit width is defined as

W = �
−�

�

dn�1

2
�u̇i

2 + fel� ,

and we introduce the total elastic energy

Fel =� feldV ,

which is a functional of the displacement and the phase field.
Thus

dW
dt

= �
−�

�

dn�Fel

�ui
u̇i +

�Fel

��

��

�t
+ �u̇iüi� = �

�1�

�2�

dn
�Fel

��

��

�t
.

The first and the last term cancel each other due to the equa-
tion of motion �19�: pure elasticity conserves energy. Hence
the integration interval can be restricted to a thin region
around the interface, since dissipation occurs only here; in
fact, �t� decays exponentially on the scale �. The limits of
integration are inside the bulk phases 1 and 2, i.e., a few
interface widths � away from the transition point. This cor-
responds to the region of “inner equations,” as it is typically
considered for rigorous sharp interface calculations of phase
field models, see, e.g., �10�. We note that upon reduction of
�, the length of the integration interval becomes smaller pro-
portionally.

We furthermore assume that the interface profile moves
without shape changes, i.e., �t=−vn�n. Then we have

dW
dt

= − vn�
�1�

�2�

dn
�Fel

��

��

�n
. �C1�

It gives explicitly

dW
dt

= − vn�
�1�

�2�

dn �	

�n
�ik

2 +
1

2

��

�n
�ll

2� = − vn�
�1�

�2�

dn
d

dn
�	�ik

2 +
1

2
��ll

2�
+ 2vn�

�1�

�2�

dn�	�ik
��ik

�n
+

�

2
�ll

��kk

�n
� = − vn	�ik

2 +
�

2
�ll

2�
�1�

�2�

+ vn�
�1�

�2�

dn��nn
��nn

�n
+ 2�n�

��n�

�n
+ ���

����

�n
�

with the local stress �ij =2	����ij +�����ll�ij /2. As we have
seen above, ��� is continuous across the interface in the sharp
interface limit, and therefore �n��� is finite �it only has a kink
at the interface for �→0�. In the sharp interface limit, the
integration interval becomes infinitely small, and therefore
the last term in the integral, ����n���, does not contribute
since it remains finite. The other terms behave differently:
The stress components �nn and �n� are even continuous due
to the boundary conditions. Since they vary only smoothly
on the integration interval, they can be taken out of the inte-
grals in the sharp interface limit. However, �nn and �n� are
already discontinuous, and therefore their normal derivatives
contain delta function spikes at the interface. Thus integra-
tion gives in the limit �→0, e.g., for the normal stress con-
tribution

�
�1�

�2�

�nn
��nn

�n
dn = �nn�

�1�

�2� ��nn

�n
dn = �nn��nn

�2� − �nn
�1�� .

Hence we finally obtain

dW
dt

=
− vn

2
�− �nn�nn − 2�n��n� + ��������1�

�2� = −
vn



�	el

�2� − 	el
�1��

�C2�

with the chemical potential �6�.
On the other hand, we know that a solution of the phase

field equations for an almost straight static interface is
��n�= �1−tanh�n /��� /2. Here, the value �=1 corresponds to
the phase 1. In the spirit of a rigorous sharp interface analy-
sis, where driving force terms behave as perturbations, this is
replaced by ��n , t�= �1−tanh��n−vnt� /��� /2 if the interface
starts to move, here due to elastic forces. We insert the equa-
tion of motion �20� into the dissipation rate �C1� and note
that the double well potential and the surface energy do not
contribute to the energy dissipation for a flat interface. As-
suming steady-state motion, we obtain

dW
dt

= −
3��vn

2

D
�

−�

� � ��

�n
�2

dn . �C3�

Using the above phase field profile, this gives
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dW
dt

= −
3�vn

2

4�D
�

−�

� �1 − tanh2 n

�
�2

dn = −
vn

2�

D
. �C4�

Comparison with Eq. �C2� hence gives the sharp interface
limit

vn = −
D

�

�	el

�1� − 	el
�2�� . �C5�

An additional curvature contribution due to surface energy
then leads to Eq. �7�.

We also checked this scenario numerically. For low ki-
netic coefficients D, the propagation is slow, and the dynami-
cal code reproduces static elasticity. Notice that the sign in-
version for the normal and shear terms in the chemical
potential leads to a growth of the softer phase. We see the
same behavior in the phase field simulations, and the front
velocity is plotted in Fig. 10. With increasing separation of
the system size L in comparison to the interface width �, the
interface velocity approaches the theoretical prediction �C5�.

APPENDIX D: IMPLEMENTATION OF PHASE FIELD
MODEL

In this section, we explain in more detail the numerical
discretization procedure which is designed to obtain a stable
numerical algorithm for the elastic problem with moving
boundaries. For simplicity, we use explicit schemes for both
the phase field and the elastic equations of motion. The dis-
sipative phase field dynamics is rather robust and therefore
we do not explain the procedure here. In contrast, the elastic
equations of motion conserve energy, and tiny numerical er-
rors can therefore easily destroy the solution. We point out
that energy conservation follows from the continuous time
translation symmetry which is violated in any numerical dis-
cretization approach. Therefore at least fluctuations in energy
are natural, but it has to be assured that the average energy
does not change in time. We experienced that naive discreti-
zation procedures can lead to long time instabilities. The
generic approach which we present here is symmetric in time

and does not suffer from this problem. It is not specifically
related to the phase field description and can easily be ex-
tended to three-dimensional systems or spatially varying
mass densities.

We do not discuss boundary conditions and concentrate
on bulk properties here. The equation of motions can be
obtained from variational principles, as was already shown in
the preceding part of the paper. The elastodynamic evolution
Eq. �19� follows from the action Eq. �A4�

�S

�ui
= 0.

We elaborate the contributions from the kinetic and the po-
tential energy separately:

ST ª� � 1

2
�u̇i

2dVdt, SU ª −� � 1

2
�ij�ijdVdt ,

and obtain for the potential part

SU = −
1

2
� � ��2	 + ����xx

2 + �yy
2 � + 2��xx�yy + 4	�xy

2 �dVdt .

We use a staggered grid, i.e., the mass density and the elastic
constants are defined on the grid points, and the displace-
ments between them �see Fig. 11� �24�. In our case, the spa-
tial �and temporal� values of the elastic coefficients 	 and �
are related to the phase field. Similar to the derivation above,
we keep the phase field fixed �and thus the elastic coeffi-
cients� during the variation with respect to the elastic dis-
placements. We use the notation uk

�n��i , j�, where i , j are the
spatial indices and n is the time index; in the phase field
formulation, no explicit distinction between the different
phases has to be made, and therefore the upper index cannot
be confused with previous notations. We assume the grid
spacing x to be the same in both spatial directions.
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v R
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Theory

FIG. 10. Interface velocity v /vR for the planar front scenario as
depicted in Fig. 9, obtained from phase field simulations. The ki-
netic coefficient D is small and thus the velocity remains far below
the Rayleigh speed. Hence the comparison to the quasistatic predic-
tion Eq. �C5� leads to a good agreement if the separation of the
scales L /� is improved. In particular, the interface moves such that
the soft phase extends.
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FIG. 11. The staggered grid: Shear modulus 	 and Lamé coef-
ficient � are defined on the nodes �circles�, and the displacements ui

on the connecting lines. Thus we have three different lattices which
are shifted by x /2.
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The central idea for derivation of the discrete equations of
motion is the discretization of the action �obeying symmetry
in space and time� and to perform discrete variations with
respect to each degree of freedom ux

�n��i , j� and uy
�n��i , j�. We

study the potential contribution to S first:

We express the first part on the grid points, and therefore
replace the elastic coefficients as follows:

	 → 	�i, j�, � → ��i, j� .

Strains also have to be evaluated on the nodal points:

�xx → �xx
�n��i, j� =

ux
�n��i, j� − ux

�n��i − 1, j�
x

,

�yy → �yy
�n��i, j� =

uy
�n��i, j� − uy

�n��i, j − 1�
x

.

The second part is expressed in the center of the squares, i.e.,

	 → 	�i + 1/2, j + 1/2� =
1

4
�	�i, j� + 	�i + 1, j� + 	�i, j + 1�

+ 	�i, j + 1�� ,

�xy → �xy
�n��i + 1/2, j + 1/2� = �ux

�n��i, j + 1� − ux
�n��i, j�

+ uy
�n��i + 1, j� − uy

�n��i, j��/�2x� .

We illustrate the discrete variation with respect to ux
�n��i , j�,

�SU

�ux
�n��i, j�

= − tx��2	�i, j� + ��i, j���xx
�n��i, j� − �2	�i + 1, j�

+ ��i + 1, j���xx
�n��i + 1, j� + ��i, j��yy

�n��i, j�

− ��i + 1, j��yy
�n��i + 1, j� − 2	�i + 1/2, j + 1/2�

��xy
�n��i + 1/2, j + 1/2� + 2	�i + 1/2, j − 1/2�

��xy
�n��i + 1/2, j − 1/2�� .

For the kinetic contribution, we proceed in a similar way.
Here, the terms are defined between the lattice points:

Discretization of the first term defines the displacement rate
vx

�n+1/2��i , j� at intermediate time steps

u̇x → vx
�n+1/2��i, j� ª

ux
�n+1��i, j� − ux

�n��i, j�
t

,

and similarly for the second term

u̇y → vy
�n+1/2��i, j� ª

uy
�n+1��i, j� − uy

�n��i, j�
t

.

Variation of the kinetic contribution to the discrete action
therefore gives

�ST

�ux
�n��i, j�

= − �x�2��vx
�n+1/2��i, j� − vx

�n−1/2��i, j��

= − �x�2�t
ux

�n+1��i, j� − 2ux
�n��i, j� + ux

�n−1��i, j�
�t�2 .

Notice that this expression is invariant against time inver-
sion. Vanishing total variation of S=SU+ST with respect to
ux

�n��i , j� leads to the desired explicit evolution equation. The
same procedure has to be performed for uy.

We performed various tests to check the code, among
them the verification of the sound speeds. The theoretical
expressions for the dilatational and shear wave speed, vd
= ���+2	� /��1/2 and vs= �	 /��1/2 were obtained with high
accuracy. Also, we checked the transmission and reflection
coefficients of both wave types at stationary interfaces. Here,
we froze the dynamics of the phase fields and let shock
waves hit the straight interface between different solid
phases. The impedance of each phase is defined as Z���

=�v��� with the relevant sound speed v��� for the considered
wave type in each phase �. The reflection coefficient R is
defined as the ratio of the amplitudes of the reflected and the
incoming wave and is given by

R =
Z�2� − Z�1�

Z�2� + Z�1� , �D1�

and the transmission coefficient is similarly T=1+R. Both
values are reproduced by the numerical simulations for a
phase boundary between two solids.
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